Field synopsis – Coronary Heart Disease (CHD)

Adam Butterworth
UK HuGENet Coordinating Centre
24th January 2008

"Top-down" approach

Database example - ECTIM

Database example - ECTIM

Systematic reviews

Issues

- Narrow, but very focused approach
- Time spent developing complex relational database to accommodate such multiplicity
- Web forms and parsing tools developed to facilitate input of data
- Identification of same studies (or study subsets) extremely time-consuming!
- Not helped by duplicate publication of data and inadequate reporting of details of study participants

Database contents

- Published reviews on 32 genes containing 45 variants
- 1078 associations tested (mean 24/review, range 2-121)
- >6000 rows of genotype data
- 529 distinct studies (max 14 associations/study)
- 746 collections (max 26 associations/collection)
- 713 published reports
- ~3000 people

Summary effect estimates

- Summary ORs estimated using relatively complex model to partially address reporting problems:
 - 1. To ensure a consistent inheritance model:
 - Per-allele OR estimated even if dominant or recessive model reported (Salanti & Higgins, Stat Med 2008; 27(5): 764-77.)
 - 2. To tackle dependence of findings on sample size:
 - Regression of InOR on log sample size included in the model, with predicted value at sample size equivalent to largest study in the meta-analysis used as the summary result (Shang et al., Lancet 2005; 366:726-32.)
 - Implemented using Monte Carlo Markov chain methods (WinBUGS)

CHD - overall picture

Empirical study of bias

- Main reason for detailed collection study-level data
- Investigating whether factors such as study size, investigator blinding, study location etc. consistently affect the results of meta-analyses.
- Using ratio of odds ratios (ROR) approach
 - E.g. early results suggest that the ROR between the initial study and following studies is 1.12 (1.03-1.22) suggesting that initial studies have, on average, a 12% higher odds ratio.

Future plans

- Study effects of publication bias and reporting bias
- Publish CHD synopsis
- Obtain funding to turn synopsis/database into maintained online resource
- Expand database to include all association studies, regardless of inclusion in systematic reviews
- Develop infrastructure to deal with inclusion of GWA studies and integration with existing candidate gene studies

Collaborators

Julian Higgins & UK HuGENet Coordinating Centre

www.hugenet.org.uk

John Danesh & Molecular Epidemiology Unit, University of Cambridge

www.phpc.cam.uk/MEU

Funders – National Institute of Health Research/
Department of Health

www.nihr.ac.uk